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Stress Analysis of Shaft-Tube Bonded Joints
Using a Variational Method

S. Kumar1 and J. P. Scanlan2

1Solid Mechanics and Materials Engineering Group, Department
of Engineering Science, University of Oxford, Oxford, UK
2Computational Engineering and Design Centre, School of
Engineering Sciences, University of Southampton, Southampton, UK

Functionally modulus graded bondline (FMGB) adhesives can be employed in
bonded joints to reduce stress concentration and, hence, achieve higher joint
strength. This study presents an analytical framework for the stress analysis of
a shaft-tube bonded joint based on a variational technique which minimises the
complimentary energy of the bonded system. This cylindrical assembly consists
of similar or dissimilar adherends and a FMGB adhesive. The effect of functional
grading of adhesive elastic modulus on the peak stresses and their distributions
in the adhesive layer are studied. The joint with various modulus grading profiles
is assessed and the results are compared with a conventional mono-modulus
bondline (MMB) adhesive joint. Stress analysis indicates that the peel and shear
peak stresses in the FMGB are much smaller and their distributions along
bondlength are more uniform than those of MMB adhesive joints under the same
axial tensile load. Numerical examples are provided to illustrate the effects of
geometrical and material properties on the distributions and intensities of stresses
in the bondline. Furthermore, optimal peel and shear strengths of the joint can be
achieved by spatially controlling the modulus of the adhesive.

Keywords: Adhesive joint; Functionally modulus graded bondline; Stress analysis;
Stress concentration; Variational method

1. NOMENCLATURE

El1, Et1, ntl1, G1 Transversely isotropic shaft properties
E2l, E2t, ntl2, G2 Transversely isotropic tube properties

Received 14 June 2009; in final form 20 October 2009.

Address correspondence to S. Kumar, Solid Mechanics and Materials Engineering
Group, Department of Engineering Science, Oxford University, Parks Road, Oxford,
OX1 3JP, United Kingdom. E-mail: kumar.shanmugam@eng.ox.ac.uk

The Journal of Adhesion, 86:369–394, 2010

Copyright # Taylor & Francis Group, LLC

ISSN: 0021-8464 print=1545-5823 online

DOI: 10.1080/00218461003704329

369

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
3
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



E1, n1 Young’s modulus and Poisson’s ratio of the
shaft, respectively

E2, n2 Young’s modulus and Poisson’s ratio of the tube,
respectively

E, n Young’s modulus and Poisson’s ratio of the
MMB adhesive, respectively

Ef1, Ef2, Ef3, Ef4 Modulus functions of the FMGB adhesive
Em, Eo Maximum and minimum values of Young’s

modulus of the FMGB adhesive
E(z) Arbitrary modulus function of the FMGB

adhesive
b Radius of the shaft
c, d Inner and outer radii of the tube respectively
t2 Thickness of the tube
t Thickness of the adhesive layer
P Axial tensile load
L Bond length of the joint
g Normalised bond length of the joint
r, h, z Radial, circumferential, and axial coordinates of

the tubular system, respectively
q, f Axial edge stresses in the shaft and tube of the

jointed portion, respectively

rð1Þrr ; r
ð1Þ
hh ; r

ð1Þ
zz ; s

ð1Þ
rz

Stress components in the shaft

rð2Þrr ; r
ð2Þ
hh ; r

ð2Þ
zz ; s

ð2Þ
rz

Stress components in the tube

rrr, rhh, rzz, srz Stress components in the adhesive
P1, P2, P3 Complementary energy in the shaft, tube, and

adhesive, respectively
P Complementary energy of the bonded system

2. INTRODUCTION

Adhesively bonded joints are widely used in a variety of industries for
joining dissimilar materials since they provide more uniform load
transfer over the bonded area. Weight reduction and improved fatigue
life are the drivers for the extensive use of adhesively bonded joints.
Numerous studies have been devoted to the stress analysis of bonded
joints, both analytically and numerically, forming the basis for design
and durability assessment of joints [1–14].

There are several types of tubular lap joints such as single lap joint,
double lap joint, stepped lap joint, scarf lap joint, etc. Out of these,
the tubular single lap joint is the most occuring one due to its ease
of manufacture and its low cost. Initially, Lubkin and Reissner [1]

370 S. Kumar and J. P. Scanlan

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
3
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



analysed the stress distribution in the adhesive of tubular lap joints
composed of thin-walled circular cylindrical shell elements subjected
to axisymmetric loading, with the assumptions that the adhesive is
thin and much more flexible than the adherends. They treated the
adhesive as a series of infinitesimal coil springs. Later, the same
problem was verified using axisymmetric quadratic isoparametric
finite elements by Adams and Peppiatt [8]. Adams and Peppiatt also
analysed tubular lap joints under torsional loads.

A few researchers have proposed two-dimensional analytical
solutions for cylindrical bonded joints, which were focused on the
joint overlap, ensuring the stress-free boundary conditions at the
free ends. For instance, Allman [15] used a minimum strain energy,
with given bending, stretching and shearing at the end of the overlap
and assuming that the longitudinal normal stress was zero, the
shear stress constant, and the transverse normal stress was linearly
distributed across the thickness of the adhesive. Shi and Cheng [16]
presented approximate closed form solutions for tubular bonded
joints based on the variational principle of complementary energy
with similar boundary conditions and assumptions to those of
Allman. Lindon et al. [17] presented experimental and theoretical
investigations to calculate the strength of cylindrical assemblies with
an anaerobic adhesive. Pugno and Carpinteri [18] analysed static
and dynamic behaviour of tubular adhesive joints under axial load.
Imanaka et al. [19] proposed a method of fatigue strength estimation
of adhesive bonded shaft joints based on experimental and finite
element studies. Nayeb-Hashemi et al. [20] proposed a damage model
for tubular joints under combined axial and torsional cyclic loading.
Thomsen [21] carried out elasto-plastic numerical stress analysis
of tubular lap joints comprising dissimilar orthotropic circular cylin-
drical laminated shells under non-axisymmetric type of loading
and showed that the inelastic behaviour of the adhesive affects
the adhesive stress distribution even at low levels of external load-
ing. Kim et al. [22] included nonlinear properties and fabrication
residual thermal stresses in the stress calculation of tubular
single-lap carbon=epoxy composite-steel joints. Recently, Nemes
et al. [23] provided a statically determinate elastic solution for the
cylindrical lap joint employing the same methodology as that of
Shi and Cheng [16]. In this study, a theoretical framework has
been provided for the stress analysis of a shaft-tube joint with a
FMGB adhesive.

Several techniques have been used to minimise the stress concen-
trations at the ends of the overlap of single lap joints and, hence, to
improve structural capability [24–26]. These include altering the
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adherend geometry [27–29], the adhesive geometry [30], and the spew
geometry [31,32]. These studies mostly focused on the geometrical
aspects of adhesive and adherends to minimise stress concentration.
Nevertheless, in a few cases, change of geometry is limited by complex-
ities involved in production, besides the cost. A few researchers altered
the material of the adhesive globally to achieve higher joint strength.
They studied the effect of the shear modulus of the adhesive on the
shear stress distribution in the bondline and showed that it has a con-
siderable effect [24,33]. Sadek [34] has shown that the lap-shear
strength of the joints can be enhanced by introducing a stiff adhesive
in the bondline. However, in this case, adhesives are prone to interfa-
cial brittle failure owing to the high peel stresses they experience.
Even if a compliant adhesive is employed in the bondline, the stress
distribution in the bonded area would be non-uniform [34]. On the
other hand, swapping the material of the adherends would not be pos-
sible because the adherend material is selected based on the functional
requirement of the structural members to be bonded. However, the
material properties of the adherends or adhesive can be altered in
the overlap region. Ganesh et al. [35] showed that composite materials
with continuously varying material properties can be fabricated by
modifying the conventional braiding technology of fiber placement.
Boss et al. [36] studied the stress distribution in the adhesive of a sin-
gle lap joint with a modulus and geometrically graded composite
adherend. Recently, Pires et al. [37,38] and Fitton and Broughton
[39] have evaluated performance of bi-adhesive bonded lap joints
and have shown considerable increase in joint strength compared with
mono-adhesive joints. Temiz [40] numerically examined bi-adhesive
double-strap joints under a bending moment. Kumar and Pandey
[41] performed 2-D and 3-D FE studies on bi-adhesive single lap joints
and showed that the 3-D analysis is indispensable for the design of
such joints. Recently, Kumar [42] has provided analytical framework
to study the stress distribution in functionally modulus graded bond-
line (FMGB) adhesive joints. Da Silva and Adams [43] have shown
that at high and low temperatures joint strengths can be significantly
improved if dissimilar adherends along with dual adhesives are
employed. All these investigators have considered only a one-step
variation in adhesive modulus over the bondlength. Therefore, in this
study, a multi-step variation of the modulus of the adhesive along its
length has been considered, so as to reduce peel and shear stress
peaks and to minimise their non-uniform distribution in the bondline.
The task is to formulate the adhesive and adherends stresses in
terms of geometrical and mechanical properties of the shaft-tube
assembly.
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3. PROBLEM FORMULATION

Consider a shaft and a tube of different materials as shown in Fig. 1
(Left). The two members are lap-jointed by a FMGB adhesive. This
cylindrical assembly is subjected to an axial tensile load, P. Figure 1
(Right) shows the coordinate system with coordinates r and z and
the edge stresses (q and f) of the bonded portion whose length is L.
The objective of the problem is to find the stress distribution in the
adhesive layer when using an adhesive whose elastic modulus varies
along the length of the bond.

The following assumptions have been adopted to analyse this
axisymmetric bonded system.

. The radial stresses in all the three domains of the cylindrical
assembly are neglected (rð1Þrr ¼ rð2Þrr ¼ rrr ¼ 0).

. Axisymmetric condition implies that the following shear stresses are

zero (sð1Þrh ¼ sð1Þzh ¼ 0; sð2Þrh ¼ sð2Þzh ¼ 0; srh ¼ szh ¼ 0) in all three domains.

. For a thin adhesive, the difference between the two shearing stres-
ses [the one acting on the outer surface of the adhesive srz(c, z) and
the other acting on the inner surface of the adhesive srz(b, z)] is very
small and, hence, the longitudinal stress, rzz, in the adhesive may be
neglected as compared with the shearing stress, srz.

. The longitudinal stress in the shaft and the tube is a function of the
axial coordinate z only, i.e., rð1Þzz ¼ rð1Þzz ðzÞ; rð2Þzz ¼ rð2Þzz ðzÞ.

Therefore, the non-zero stress components in the cylindrical assembly
are:

. Shaft: sð1Þrz ðr; zÞ; rð1Þhh ðr; zÞ; r
ð1Þ
zz ðzÞ

FIGURE 1 Left: Adhesively bonded shaft-tube joint; Right: Coordinate
system (r, h, z) and edge stresses on jointed portion.
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. Adhesive: srz(r, z), rhh(r, z)

. Tube: sð2Þrz ðr; zÞ; rð2Þhh ðr; zÞ; r
ð2Þ
zz ðzÞ:

Incorporating the aforementioned assumptions, the differential
equations of equilibrium are reduced to the following and are valid
in all the three domains:

@srz
@z

� 1

r
rhh ¼ 0 ð1Þ

@srz
@z

þ @rzz
@z

þ 1

r
srz ¼ 0: ð2Þ

In this investigation, stress analysis of the shaft-tube joint is pre-
sented based on admissible stress field that satisfy the equilibrium
equations and the stress boundary conditions at z¼ 0, z¼L, and the
stress continuity at the interfaces (r¼ b; r¼ c). The equilibrium of
the assembly dictates the following relationship between q and f and
rð1Þzz and rð2Þzz :

P ¼ qpb2 ¼ fpðd2 � c2Þ ¼ rð1Þzz pb
2 þ rð2Þzz pðd2 � c2Þ ð3Þ

rð2Þzz ¼ f þ b2

ðc2 � d2Þ r
ð1Þ
zz : ð4Þ

3.1. Stress Fields in the Adherends and the Adhesive

Considering equilibrium of an elemental length, dz, of the shaft as
shown in Fig. 2a, the shear stress, sð1Þrz , in the shaft can be expressed as

sð1Þrz ðr; zÞ ¼
r

2

drð1Þzz

dz
: ð5Þ

Using sð1Þrz given by Eq. (5) in equilibrium Eq. (1), we can get the
tangential stress in the shaft which is given by

rð1Þhh ðr; zÞ ¼
r2

2

d2rð1Þzz

dz2
: ð6Þ

Similarly, considering equilibrium of the elemental length, dz, of
the shaft and the adhesive together as depicted in Fig. 2b, we can
express srz as

srzðr; zÞ ¼
b2

2r

drð1Þzz

dz
: ð7Þ
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Again, using srz in equilibrium Eq. (1), the circumferential stress, rhh,
in the adhesive is obtained as

rhhðr; zÞ ¼
b2

2

d2rð1Þzz

dz2
: ð8Þ

Note that the circumferential stress in the adhesive is independent of r
since we assumed that rzz is negligible. Considering equilibrium of
elemental length, dz, of the tube as shown in Fig. 2c, the shear stress
in the tube can be given as a function of the gradient of longitudinal
stress in the tube:

sð2Þrz ðr; zÞ ¼
ðr2 � d2Þ

2r

drð2Þzz

dz
: ð9Þ

FIGURE 2 (a) Equilibrium of the shaft; (b) equilibrium of the shaft and
adhesive; (c) equilibrium of the tube.
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Applying the shear stress continuity condition at the interfaces (sð2Þrz at
r¼ c is equal to srz at r¼ c), we can relate the longitudinal stress
gradients in shaft and tube as

drð2Þzz

dz
¼ b2

ðc2 � d2Þ
drð1Þzz

dz
: ð10Þ

Using the above in Eq. (9), we get

sð2Þrz ðr; zÞ ¼
ðr2 � d2Þ

2r

b2

ðc2 � d2Þ
drð1Þzz

dz
: ð11Þ

Now, either the continuity of circumferential stress condition or
equilibrium equations can be used to obtain the tangential stress in
the tube as

rð2Þhh ðr; zÞ ¼
ðr2 � d2Þ

2

b2

ðc2 � d2Þ
d2rð1Þzz

dz2
: ð12Þ

It is clear from the above given expressions that both shear and
circumferential stresses are continuous across the interfaces. Thus,

the stress components in the shaft [sð1Þrz ðr; zÞ; rð1Þhh ðr; zÞ], in the adhesive

[srz(r, z), rhh(r, z)], and in the tube [sð2Þrz ðr; zÞ; rð2Þhh ðr; zÞ; r
ð2Þ
zz ðzÞ] are

expressed in terms of a single unknown stress function, rð1Þzz ðzÞ. Now,
the statically determinate problem is solved applying the stress
boundary conditions prescribed at the ends of overlap and the
stress-free end conditions. The boundary conditions are:

rð1Þzz ð0Þ ¼ q; rð1Þzz ðLÞ ¼ 0; ð13Þ

srzðr; 0Þ ¼ 0; srzðr;LÞ ¼ 0; r 2 ½b; c�: ð14Þ

3.2. Functionally Modulus Graded Bondline (FMGB)
Adhesive

A few researchers have examined the concept of a bi-adhesive bonding
technique in which the stiff adhesive is applied in the middle portion of
the bondline while the compliant adhesive is applied at the overlap
ends. These studies indicate that bi-adhesive joints have reduced
stress concentration at the overlap ends compared with traditional
MMB adhesive joints. In bi-adhesive joints there is only one step vari-
ation of the elastic modulus of the adhesive along the bond length. In
the current study, a multi-step variation of the modulus of the bond-
line adhesive is considered. A multi-modulus bondline in tubular joints
can be achieved by adopting a procedure similar to that described
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by Mengel et al. [44]. This multi-step variation is approximated by a
smoothly varying modulus function as shown in Fig. 3. The adhesive
modulus is gradually reduced from the shaft end to the tube end.
The modulus function is approximated such thatZ 1

0

Ef ðgÞ dg ’ E0g0 þ E1g1 þ � � � þ Em�1gm�1 þ Emgm: ð15Þ

The various modulus profiles examined in the analysis are given
below and are shown in Fig. 4. These modulus functions are arbitrarily
chosen.

Ef1 ¼ Em exp ln
Eo

Em

� �
z

L

� �� �
ð16Þ

Ef2 ¼ ðEo � EmÞ
z

L

h i3
þ Em ð17Þ

Ef3 ¼ ðEo � EmÞ
z

L

h i2
þ Em ð18Þ

Ef4 ¼ Em ð19Þ

FIGURE 3 Representation of multi-modulus bondline adhesive as a function-
ally modulus graded bondline adhesive.
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4. VARIATIONAL METHOD

The variational analysis can be based either on an assumed infini-
tesimal displacement field in conjunction with the principle of mini-
mum potential energy or on an assumed small stress variation
associated with the complementary energy [45]. In this study, the
second route has been pursued, following the analysis developed by
Shi and Cheng [16] for tubular-lap joints and extending it to
shaft-tube joint with a FMGB adhesive. The problem can be defined
as obtaining a solution for the stress function rð1Þzz by minimizing the
complementary energy of the cylindrical bonded system, where the
stress components in the adherends and in the FMGB adhesive have
been expressed in terms of a single stress function, rð1Þzz . The admiss-
ible stress states are those that satisfy the differential equations of
equilibrium, traction boundary conditions, stress-free end conditions
of the joint, and stress continuity at the interfaces. Once rð1Þzz has
been obtained, then all the stress components in the adhesive and
adherends can be obtained.

FIGURE 4 Young’s modulus of adhesive as a function of normalised
bondlength, g.
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The complementary energy of the joint comprising transversely
isotropic shaft and tube and a functionally modulus graded isotropic
adhesive can be given by P, where

P ¼ P1 þP2 þP3: ð20Þ
P1 is the complementary energy of the shaft, P2 is the complementary
energy of the tube, and P3 is the complementary energy of the
adhesive. P1, P2, and P3 are given by

P1 ¼ p
Z L

0

Z b

a

rð1Þ2zz

El1
þ rð1Þ2hh

Et1
� 2ntl1

Et1
rð1Þzz r

ð1Þ
hh þ sð1Þ2rz

G1

" #
r dr dz ð21Þ

P2 ¼ p
Z L

0

Z d

c

rð2Þ2zz

El2
þ rð2Þ2hh

Et2
� 2ntl2

Et2
rð2Þzz r

ð2Þ
hh þ sð2Þ2rz

G2

" #
r dr dz ð22Þ

P3 ¼ p
Z L

0

Z c

b

1

EðzÞ r2hh þ 2ð1þ nÞs2rz
� �

r dr dz: ð23Þ

For an isotropic system, P1 and P2 become

P1 ¼ p
Z L

0

Z b

a

1

E1
rð1Þ2zz þ rð1Þ2hh � 2n1rð1Þzz r

ð1Þ
hh þ 2ð1þ n1Þsð1Þ2rz

h i
r dr dz

ð24Þ

P2 ¼ p
Z L

0

Z d

c

1

E2
rð2Þ2zz þ rð2Þ2hh � 2n2rð2Þzz r

ð2Þ
hh þ 2ð1þ n2Þsð2Þ2rz

h i
r dr dz:

ð25Þ
Introducing expressions for stresses (rð1Þhh and sð1Þrz ) in P1 and integrat-
ing the resulting expression over the radius, r, the complementary
energy of the isotropic shaft becomes

P1 ¼ p
Z L

0

A1r
ð1Þ2
zz þ A2

d2rð1Þzz

dz2

 !2

þ A3
d2rð1Þzz

dz2
rð1Þzz þ A4

drð1Þzz

dz

 !2
2
4

3
5dz;
ð26Þ

where

A1 ¼ b2

2E1
; A2 ¼ b6

24E1
ð27Þ

A3 ¼ �n1b4

4E1
; A4 ¼ ð1þ n1Þb4

8E1
: ð28Þ
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Again, using the expressions for stresses (rð2Þzz , r
ð2Þ
hh , and sð2Þrz ) inP2, and

integrating the resulting expression over the radius, r, the energy
functional for an isotropic tube becomes

P2 ¼ p
Z L

0

C1þC2r
ð1Þ2
zz þC3r

ð1Þ
zz þC4 r00ð1Þzz

� �2�

þ C5r
00ð1Þ
zz þ C6r

00ð1Þ
zz þ C7 r00ð1Þzz

� �i
dz ð29Þ

Here, r00ð1Þzz ¼ d2rð1Þzz

dz2
; r0ð1Þzz ¼ drð1Þzz

dz and

C1 ¼ f 2ðd2 � c2Þ
2E2

ð30Þ

C2 ¼ q2ðd2 � c2Þ
2E2

; q ¼ b2

ðc2 � d2Þ ð31Þ

C3 ¼
fqðd2 � c2Þ

E2
ð32Þ

C4 ¼
q2l3
4E2

; l3 ¼
Z d

c

r2 � d2
	 
2

r dr ð33Þ

C5 ¼ �n2fqm3

E2
; m3 ¼

Z d

c

r2 � d2
	 


r dr ð34Þ

C6 ¼
�n2q2m3

E2
ð35Þ

C7 ¼ ð1þ n2Þq2n3

2E2
; n3 ¼

Z d

c

ðr2 � d2Þ2

r
dr: ð36Þ

Similarly, using expressions for stresses (srz and rhh) in P3 and inte-
grating over the radius, r, the complementary energy in the FMGB
adhesive becomes

P3 ¼ p
Z L

0

B1

EðzÞ
d2rð1Þzz

dz2

 !2

þ B2

EðzÞ
drð1Þzz

dz

 !2
2
4

3
5dz; ð37Þ

where

B1 ¼ b4ðc2 � b2Þ
8

; B2 ¼ ð1þ ncÞb4 lnðc=bÞ
2

: ð38Þ
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The complementary energy in the whole assembly becomes

P ¼ p
Z L

0

a1r
ð1Þ2
zz þ a2ðzÞ r00ð1Þzz

� �2
þ a3r

00ð1Þ
zz rð1Þzz þ a4ðzÞ r0ð1Þzz

� �2� �
dz

þ p
Z L

0

a5r
00ð1Þ
zz þ a6r

ð1Þ
zz þ a7

h i
dz ð39Þ

where the constant coefficients a1, a3, a5, a6, and a7 and the variable
coefficients a2(z) and a4(z) depend on geometrical and material proper-
ties and the loading conditions of the bonded joint, where

a1 ¼ A1 þ C2; a2ðzÞ ¼ A2 þ
B1

EðzÞ þ C4; a3 ¼ A3 þ C6; ð40Þ

a4ðzÞ ¼ A4 þ
B2

EðzÞ þ C7; a5 ¼ C5; a6 ¼ C3; a7 ¼ C1: ð41Þ

The above integral P can be re-written as a function of longitudinal
stress rð1Þzz and its derivatives as

P ¼
Z L

0

W rð1Þzz ;r
0ð1Þ
zz ; r00ð1Þzz ; z

� �
dz: ð42Þ

We now need the differential equation satisfied by the function rð1Þzz

which minimises the above functional. Performing variational
calculus on the above functional yields

@W

@rð1Þzz

� d

dz

@W

@r0ð1Þzz

 !
þ d2

dz2
@W

@r00ð1Þzz

 !
¼ 0: ð43Þ

Manipulating the above equation results in the following differential
equation which can be solved with the stress boundary conditions and
stress-free end conditions given by Eqs. (13) and (14) respectively. Note
that the stress continuity at the interfaces are automatically satisfied.

a2ðzÞ
d4rð1Þzz

dz4
þ 2a02ðzÞ

d3rð1Þzz

dz3
þ ða3 � a4ðzÞ þ a002ðzÞÞ

d2rð1Þzz

dz2

þ a04ðzÞ
drð1Þzz

dz
þ a1r

ð1Þ
zz þ a6

2
¼ 0

ð44Þ

5. RESULTS AND DISCUSSION

Stress analyses of the isotropic bonded system have been carried out in
two stages under the same axial tensile load, P, with bondlength
L¼ 50mm. Initially, the joint analysed consisted of the aluminium
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alloy shaft and tube with a FMGB adhesive. The geometrical and
material properties of the aluminium alloy adherends used in the
analyses are given in Table 1. The FMGB adhesive having the modu-
lus function Ef1 with Eo¼ 280MPa and Em¼ 2700MPa was used in the
analysis. In the second stage, the joint analysed consisted of the same
aluminium alloy adherends and AV119 adhesive whose properties are
given in Table 1. (Aluminium adherends and AV119 adhesive proper-
ties were taken from Nemes et al. [23].) The shear and peel stresses
both at the midplane and at the interfaces of the FMGB adhesive joint
were studied and compared with the MMB adhesive joint. The distri-
butions of shear and peel stresses at the midplane of the adhesive are
shown in Figs. 5 and 6, respectively. As imposed, the shear stress
vanishes at the overlap ends and its peak appears close to the tube
overlap end. The shear stress distribution is not symmetrical about

TABLE 1 Geometric and Material Properties of Adhesive and Adherends

Item Material E [GPa] n b [mm] c [mm] d [mm] f [MPa]

Shaft AU 4G 75 0.3 11 – – 1000
Tube AU 4G 75 0.3 – 11.2 12.2 –
Adhesive Araldite AV119 2.7 0.35 11 11.2 – –

FIGURE 5 Shear stress distribution at the midplane of the adhesive layer.
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the mid-bondline because of the stiffness mismatch between shaft
and tube. On the other hand, peel stress peaks appear at the ends of
the overlap. Because of the stress equilibrium conditions, it can be
expected that the shear stress gradient is associated with the peel
stress gradient across the thickness of the adhesive layer. The peel
stress distribution is not anti-symmetric about the mid-bondline for
the same reason stated above. The peak peel stress appears at the
tube overlap end. It is obvious from these figures that the shear and
peel stress intensities are minimum and their distributions along
the bondline are more uniform in the FMGB adhesive than those of
a MMB adhesive joint. For the parameters used here, the shear stress
peak reduces by 30% and the peel stress peak reduces by 58% by
employing a FMGB adhesive in lieu of a MMB adhesive. If the modu-
lus function, Ef4, is employed (i.e., MMB), stress distributions in the
adhesive agree with the stress distribution predicted by Shi and
Cheng [16].

5.1. Effect of Bondlength (L)

To investigate the effects of bondlength on adhesive stresses, analyses
have been carried out by varying the bondlength from 10 to 100mm
with a FMGB adhesive of modulus function Ef1 and also with a

FIGURE 6 Peel stress distribution at the midplane of the adhesive layer.
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MMB adhesive under the same axial load, P. Figures 7 and 8 show the
shear and peel stress distributions at the midplane of the adhesive
layer respectively. For a small bondlength, say L� 20mm, the peak
shear stress occurs almost at the mid-bondlength in both FMGB and
MMB adhesives and its distribution is parabolic. For bondlength
L� 10mm, shear and peel stress distributions are more severe in

FIGURE 7 Shear stress distribution at the midplane of the adhesive layer as
a function of the bondlength.
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the FMGB adhesive than in the MMB adhesive. As the bondlength
increases, shear and peel peak stresses reduce and their distributions
become more uniform. With increase of bondlength, the shear stress
peak shifts towards the tube overlap end. The shear and peel peak
stresses reduce continuously with increase of bondlength (up to
L¼ 100mm), whereas they do not reduce appreciably beyond a parti-
cular length (L¼ 50mm in this case) in the MMB adhesive.

FIGURE 8 Peel stress distribution at the midplane of the adhesive layer as a
function of the bondlength.
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FIGURE 9 Shear stress distribution at the midplane of the adhesive for
different modulus function profiles.

FIGURE 10 Peel stress distribution at the midplane of the adhesive for
different modulus function profiles.
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5.2. Effect of Modulus Function

Different modulus function profiles have been examined under the
same axial tensile load, P, to reduce the shear and peel peak stresses
and their gradients in the FMGB adhesive. The shear and peel stress
distributions for different modulus functions are shown in Figs. 9
and 10, respectively. The shear stress intensity is less and its distri-
bution is more uniform for the modulus function Ef1 while the peel
stress intensity is less for the modulus function Ef3. If we choose a stiff
MMB adhesive to ensure higher shear strength, it would fail due to
high peel stress. Unlike the MMB adhesive, the modulus function of

FIGURE 11 Shear stress distribution at the midplane of the adhesive as a
function of the stiffness mismatch.
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the FMGB adhesive can be so tailored, simultaneously, as to achieve
both shear and peel strengths.

5.3. Effect of Stiffness Mismatch

Analyses have been carried out with modulus function Ef1 for different
E1=E2 ratios under the axial load P. Figures 11 and 12 show the shear
stress distribution at the midplane of the adhesive as a function of
stiffness mismatch between shaft and tube. When E1 is very small
compared with E2, say E1¼ 0.1E2, the shear stress peak appears
close to the shaft overlap end of the adhesive. As we increase E1, when

FIGURE 12 Shear stress distribution at the midplane of the adhesive as a
function of the stiffness mismatch.
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E1’ 0.2E2, the shear stress distribution is symmetric about the
mid-bondline. This is the optimum ratio at which the shear stress peak
is mimimum in the bondline. If we increase the modulus ratio beyond
E1=E2¼ 0.2, the shear stress distribution loses its symmetricity about
its mid-bondline and the shear stress peak increases close to the tube
overlap end of the bondline. However, the shear stress peak close to
the shaft end of the bondline decreases and the distribution becomes
more uniform. Figures 13 and 14 show the peel stress distribution at
the midplane of the adhesive as a function of stiffness mismatch. At
a small E1=E2 ratio, say 0.1, the peel stress peak appears at the shaft
overlap end of the bondline. As we increase this ratio, the distribution
becomes anti-symmetric at about 0.2. This is the optimum ratio at

FIGURE 13 Peel stress distribution at the midplane of the adhesive as a
function of the stiffness mismatch.
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which we have minimum peel stress intensity in the adhesive. As we
increase this ratio further, peel stress distribution loses its anti-
symmetricity and its peak appears at the tube overlap end of the
adhesive. The peel stress peak increases with increase of the E1=E2

ratio at the tube overlap end, while the intensity decreases at the shaft
end of the bondline. We can’t always choose this modulus ratio since it
is based on the functional requirements of the materials to be joined.

5.4. Effect of Adhesive Thickness

Analyses were performed with the modulus function profile Ef1, vary-
ing the thickness of the adhesive while keeping the shaft diameter and

FIGURE 14 Peel stress distribution in the adhesive as a function of the
stiffness mismatch.
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the thickness of the tube constant. The influence of adhesive thickness
variation on the shear and peel stresses and their distributions are
shown in Figs. 15 and 16, respectively. As the thickness of the
adhesive increases, both shear and peel peak stresses reduce and their
distributions become more uniform in both FMGB and MMB adhesive
joints. With increase of adhesive thickness, the shear stress peak
shifts towards mid-bondline.

FIGURE 15 Shear stress distribution at the midplane of adhesive as a
function of the bondline thickness.

Stress Analysis of Shaft-Tube Joint 391

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
3
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



6. CONCLUSIONS

A novel concept of functional grading of adhesive modulus has been
implemented, in order to reduce the peak stresses and their
non-uniform distribution in the adhesive of a shaft-tube bonded
joint based on a variational method. Three functionally modulus
grading profiles were examined and the results were compared with

FIGURE 16 Peel stress distribution at the midplane of the adhesive as a
function of the bondline thickness.
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conventional MMB adhesive joints. Stress analysis indicates more
reduction in shear and peel peak stresses and their gradients in the
overlap ends of the bondline for the exponential modulus function
profile. For this modulus profile, the shear stress peak is reduced by
30% and the peel stress peak is reduced by 58%. The reduction in
shear and peel stress concentrations would significantly improve joint
strength and performance. Parametric studies have been conducted by
selectively perturbing the geometrical and material properties of the
bonded system in order to reduce the shear and peel peak stresses
and their gradients.
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